

QP40-SM31LR4C

QSFP40 40Gb/s LR4 10km Transceiver

PRODUCT FEATURES

- Up to 11.2Gbps per channel bandwidth
- Up to10km transmission
- 4 CWDM lanes MUX/DEMUX design
- Duplex LC connector
- QSFP MSA compliant
- Single +3.3V power supply operating
- Built-in digital diagnostic functions
- Temperature range 0°C to 70°C
- RoHS Compliant

APPLICATIONS

- 40G BASE-LR4 Ethernet
- InfiniBand QDR/DDR
- Data centers Switches to Routers

PRODUCT DESCRIPTION

Photonics Valley's QP40-SM31-LR10-X is transceiver module designed for 10km optical communication applications, compliant with 40GBASE-LR4 of the IEEE P802.3ba standard. The module converts 4 inputs channels of 10Gb/s electrical data to 4 CWDM optical signals, and multiplexes them into a single channel for 40Gb/s optical transmission. The central wavelengths of the 4 CWDM channels are 1271, 1291, 1311 and 1331 nm as members of the CWDM wavelength grid defined in ITU-T G694.2.

Ordering information

Product part Number	Data Rate (Gbps)	Media	Wavelength (nm)	Transmission Distance(km)	Temperatu (Tcase)	re Range (°C)
QP40-SM31LR4C	40	SMF	1271/1291/	10	0~70	Commercial
			1311/1331			

Absolute Maximum Ratings

Parameter	Symbol	Min.	Typical	Max.	Unit
Storage Temperature	Ts	-40		+85	°C
Supply Voltage	V _{CC} T, R	-0.5		4	V
Relative Humidity	RH	0		85	%

Recommended Operating Environment:

Parameter	Symbol	Min.	Typical	Max.	Unit
Case operating Temperature	T _C	0		+70	°C
Supply Voltage	V _{CCT, R}	+3.13	3.3	+3.47	V
Supply Current	Icc			1000	mA
Power Dissipation	PD			3.5	W

Electrical Characteristics (T_{OP} = 0 to 70 °C, VCC = 3.13 to 3.47 Volts

Parameter	Symbol	Min	Тур	Max	Unit	Note	
Data Rate per Channel		-	10.3125	11.2	Gbps		
Power Consumption		-	2.5	3.5	W		
Supply Current	Icc		0.75	1.0	А		
Control I/O Voltage-High	VIH	2.0		Vcc	V		
Control I/O Voltage-Low	VIL	0		0.7	V		
Inter-Channel Skew	TSK			150	Ps		
RESETL Duration			10		Us		
RESETL De-assert time				100	ms		
Power On Time				100	ms		
	Trans	mitter					
Single Ended Output Voltage Tolerance		0.3		4	V	1	
Common mode Voltage Tolerance		15			mV		
Transmit Input Diff Voltage	VI	150		1200	mV		
Transmit Input Diff Impedance	ZIN	85	100	115			
Data Dependent Input Jitter	DDJ		0.3		UI		
Receiver							
Single Ended Output Voltage Tolerance		0.3		4	V		

Rx Output Diff Voltage	Vo	370	600	950	mV	
Rx Output Rise and Fall Voltage	Tr/Tf			35	ps	1
Total Jitter	TJ		0.3		UI	

Note:

1. 20~80%

Optical Parameters (TOP = 0 to 70 °C, VCC = 3.0 to 3.6 Volts)

Parameter	Symbol	Min	Тур	Max	Unit	Ref.		
T ut uniciti		mitter	-JP	IVIU/X				
	LO	1264.5	1271	1277.5	nm			
	L1	1284.5	1291	1297.5	nm			
Wavelength Assignment	L2	1304.5	1311	1317.5	nm			
	L3	1324.5	1331	1337.5	nm			
Side-mode Suppression Ratio	SMSR	30	-	-	dB			
Total Average Launch Power	PT	-	-	8.3	dBm			
Average Launch Power, each Lane		-7	-	8	dBm			
Difference in Launch Power between any two Lanes (OMA)		-	-	6.5	dB			
Optical Modulation Amplitude, each Lane	OMA	-4		+3.5	dBm			
Launch Power in OMA minus Transmitter and Dispersion Penalty (TDP), each Lane		-4.8	-		dBm			
TDP, each Lane	TDP			2.3	dB			
Extinction Ratio	ER	3.5	1	-	dB			
Transmitter Eye Mask Definition {X1, X2, X3, Y1, Y2, Y3}		{0.25, 0.4, 0.45, 0.25, 0.28, 0.4}						
Optical Return Loss Tolerance		-	-	20	dB			
Average Launch Power OFF Transmitter, each Lane	Poff			-30	dBm			
Relative Intensity Noise	Rin			-128	dB/HZ	1		
Optical Return Loss Tolerance		-	-	12	dB			
Receiver								
Damage Threshold	THd	3.3			dBm	1		
Average Power at Receiver Input, each Lane	R	-14		0	dBm			
Receive Electrical 3 dB upper Cut off Frequency, each Lane				12.3	GHz			
RSSI Accuracy		-2		2	dB			

Receiver Reflectance	Rrx			-26	dB	
Receiver Power (OMA), each Lane		-	-	3.5	dBm	
Receive Electrical 3 dB upper Cutoff Frequency, each Lane				12.3	GHz	
LOS De-Assert	LOS_D			-15	dBm	
LOS Assert	LOSA	-25			dBm	
LOS Hysteresis	LOS _H	0.5			dB	

Note

1. 12dB Reflection

Timing for Soft Control and Status Functions

			Un	
Parameter	Symbol	Max	it	Conditions
Initialization Time	Tinit	2000	ms	Time from power on1, hot plug or rising edge of Reset until the module is fully functional2
Reset Init Assert Time	Treset_init	2	μs	A Reset is generated by a low level longer than the minimum reset pulse time present on the ResetL pin.
Serial Bus Hardware Ready Time	Tserial	2000	ms	Time from power on 1 until module responds to data transmission over the 2-wire serial bus
Monitor Data Ready Time	tdata	2000	ms	Time from power on 1 to data not ready, bit 0 of Byte 2, deasserted and IntL asserted
Reset Assert Time	t_reset	2000	ms	Time from rising edge on the ResetL pin until the module is fully functional2
LPMode Assert Time	ton_LPMode	100	μs	Time from assertion of LPMode (Vin:LPMode =Vih) until module power consumption enters lower Power Level
IntL Assert Time	ton_IntL	200	ms	Time from occurrence of condition triggering IntL until Vout:IntL = Vol
IntL Deassert Time	toff_IntL	500	μs	toff_IntL 500 µs Time from clear on read3 operation of associated flag until Vout:IntL = Voh. This includes deassert times for Rx LOS, Tx Fault and other flag bits.
Rx LOS Assert Time	ton_los	100	ms	Time from Rx LOS state to Rx LOS bit set and IntL asserted
Flag Assert Time	ton_flag	200	ms	Time from occurrence of condition triggering flag to associated flag bit set and IntL asserted
Mask Assert Time	ton_mask	100	ms	Time from mask bit set4 until associated IntL assertion is inhibited

Mask De-assert Time	toff_mask	100	ms	Time from mask bit cleared4 until associated IntlL operation resumes
ModSelL Assert Time	ton_ModSelL	100	μs	Time from assertion of ModSelL until module responds to data transmission over the 2-wire serial bus
ModSelL Deassert Time	toff_ModSelL	100	μs	Time from deassertion of ModSelL until the module does not respond to data transmission over the 2-wire serial bus
Power_over-ride or Power-set Assert Time	ton_Pdown	100	ms	Time from P_Down bit set 4 until module power consumption enters lower Power Level
Power_over-ride or Power-set De-assert Time	toff_Pdown	300	ms	Time from P_Down bit cleared4 until the module is fully functional3

Note:

- 1. Power on is defined as the instant when supply voltages reach and remain at or above the minimum specified value.
- 2. Fully functional is defined as IntL asserted due to data not ready bit, bit 0 byte 2 de-asserted.
- 3. Measured from falling clock edge after stop bit of read transaction.
- 4. Measured from falling clock edge after stop bit of write transaction.

Transceiver Block Diagram

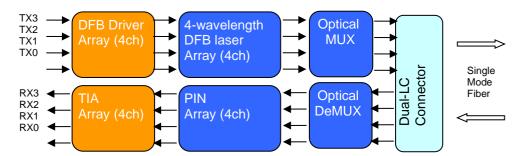


Figure 1: 40Gb/s QSFP IR4 Transceiver Block Diagram

Pin Assignment

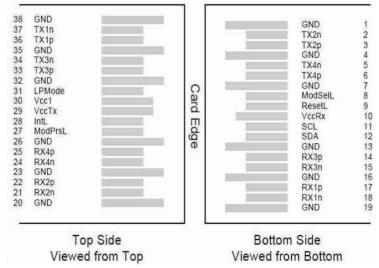
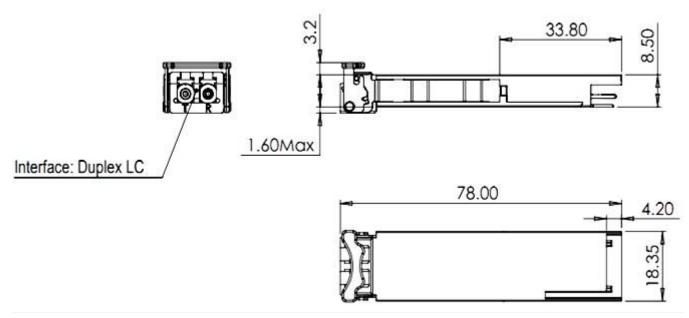


Diagram of Host Board Connector Block Pin Numbers and Name

Pin Description

Pin	Logic	Symbol	Name/Description	Ref.
1		GND	Ground	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	
3	CML-I	Tx2p	Transmitter Non-Inverted Data output	
4		GND	Ground	1
5	CML-I	Tx4n	Transmitter Inverted Data Output	
6	CML-I	Tx4p	Transmitter Non-Inverted Data Output	
7		GND	Ground	1
8	LVTTL-I	ModSelL	Module Select	
9	LVTTL-I	ResetL	Module Reset	
10		VccRx	+3.3V Power Supply Receiver	2
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock	
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data	
13		GND	Ground	1
14	CML-O	Rx3p	Receiver Inverted Data Output	
15	CML-O	Rx3n	Receiver Non-Inverted Data Output	
16		GND	Ground	1
17	CML-O	Rx1p	Receiver Inverted Data Output	
18	CML-O	Rx1n	Receiver Non-Inverted Data Output	
19		GND	Ground	1
20		GND	Ground	1
21	CML-O	Rx2n	Receiver Inverted Data Output	


22	CML-O	Rx2p	Receiver Non-Inverted Data Output	
23		GND	Ground	1
24	CML-O	Rx4n	Receiver Inverted Data Output	
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	
26		GND	Ground	1
27	LVTTL-O	ModPrsL	Module Present	
28	LVTTL-O	IntL	Interrupt	
29		VccTx	+3.3V Power Supply Transmitter	2
30		Vcc1	+3.3V Power Supply	2
31	LVTTL-I	LPMode	Low Power Mode	
32		GND	Ground	1
33	CML-I	Tx3p	Transmitter Inverted Data Output	
34	CML-I	Tx3n	Transmitter Non-Inverted Data Output	
35		GND	Ground	1
36	CML-I	Tx1p	Transmitter Inverted Data Output	
37	CML-I	Tx1n	Transmitter Non-Inverted Data Output	
38		GND	Ground	1

Notes:

- 1. GND is the symbol for single and supply(power) common for QSFP modules, All are common within the QSFP module and all module voltages are referenced to this potential otherwise noted. Connect these directly to the host board signal common ground plane. Laser output disabled on TDIS >2.0V or open, enabled on TDIS <0.8V
- 2. VccRx, Vcc1 and VccTx are the receiver and transmitter power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown below. VccRx, Vcc1 and VccTx may be internally connected within the QSFP transceiver module in any combination. The connector pins are each rated for maximum current of 500mA.

Mechanical Dimensions

Regulatory Compliance

Feature	Reference	Performance
Electrostatic discharge (ESD)	IEC/EN 61000-4-2	Compatible with standards
Electromagnetic Interference	FCC Part 15 Class B EN 55022	Compatible with standards
(EMI)	Class B (CISPR 22A)	
Laser Eye Safety	IEC/EN 60825-1, 2	Class 1 laser product
Component Recognition	IEC/EN 60950, UL	Compatible with standards
ROHS	2002/95/EC	Compatible with standards
EMC	EN61000-3	Compatible with standards